
Day 3 - 1

SCA Training for
Developers and Testers

Day 3:
Developing SCA Compliant
Waveforms / Applications

and
Device/DeviceManager

Copyright © 2002, Raytheon Company.
All Rights Reserved

SCA Technical Overview
16 - 20 September 2002

Day 3 - 2

Day 3 AGENDA

• Waveform Design
– UML Overview
– Service Definition
– Waveform Design Process

• Device and DeviceManager Design
– Device Implementations
– DeviceManager Implementations
– Device Usage and Design Examples

SCA Technical Overview
16 - 20 September 2002

Day 3 - 3

SCA Technical Overview
16 - 20 September 2002

Day 3 - 4

Waveform Design

• UML Overview
• Service Definition
• Waveform Design Process

SCA Technical Overview
16 - 20 September 2002

Day 3 - 5

Object Management Group (OMG)
Unified Modeling Language (UML)

• The UML is a graphical language for visualizing,
specifying, constructing, and documenting the artifacts
of a software-intensive system.

• Adopted by OMG in 1997
• Current version is UML 1.4
• UML 2.0 Revised Submissions Are Ongoing

– Infrastructure
– Superstructure
– Object Constraint Language (OCL)
– Diagram Interchange

SCA Technical Overview
16 - 20 September 2002

Day 3 - 6

Metamodel Architecture

OMG UML

UML Profiles for
CORBA, Java,
C++, XML DTD

WF Analysis
Model (Platform
Independent Model (PIM)

Meta Object
Facility (MOF)

Specification Layer (M2)

Metadata Layer (M3)

Customization Layer (M1)

Platform
Technology
profiles

«extends»

«instanceOf»

«instanceOf»

«instanceOf»

-WF CORBA Interfaces
-WF Interface &
Component Implementations
- WF XML Files

«refine»

Platform Specific
Implementations/Model Layer (M0) -SCA CF Interfaces

-SCA Domain Profile XML
-SCA Services

«use»

«instanceOf»

SCA Technical Overview
16 - 20 September 2002

Day 3 - 7

UML Building Blocks

• The basic building blocks of UML are:
– model elements (packages, classes, interfaces, components,

use cases, nodes, etc.)
– relationships (associations, generalization, dependencies, etc.)
– diagrams (class diagrams, use case diagrams, interaction

diagrams, component diagrams, deployment diagrams, etc.)

SCA Technical Overview
16 - 20 September 2002

Day 3 - 8

UML Core Model Elements
Construct Description Syntax

class a description of a set of objects that share
the same attributes, operations, methods,
relationships and semantics.

interface a named set of operations that characterize
the behavior of an element. Is a
specification without implementation.

package Are general-purpose hierarchical
organizational units of the UML model.

use case Is a coherent unit of externally visible
functionality provided by a system unit.

actor Is a type of class, stereotype “actor”, that is
an idealization of an external person,
process, or thing interacting with a system,
subsystem, or class.

object Is an instance of a class

«interface»

attribute

operation()

SCA Technical Overview
16 - 20 September 2002

Day 3 - 9

UML Core Model Elements, cont’d

Construct Description Syntax

constraint A semantic condition or restriction

component a physical, replaceable part of a system that
packages implementation and provides the
realization of a set of interfaces.

node a run-time physical object that represents a
computational resource.

{constraint}

SCA Technical Overview
16 - 20 September 2002

Day 3 - 10

UML Relationships
Construct Description Syntax

association A relationship between two or more classifiers that
involves connections among their instances.

aggregation A special form of association that specifies a whole-
part relationship between the aggregate (whole)
and the component part.

composition A stronger form of association in which the
composite has sole responsibility for managing its
parts.

generalization Relates general descriptions of parent classifiers
(superclasses) to more specialized child classifiers
(subclasses), which is used for inheritance. The
subclass for example adds to the superclass
definition or overrides the superclass definition.

dependency A relationship between two modeling elements, in
which a change to one modeling element (the
independent element) will affect the other modeling
element (the dependent element). Types of
dependencies are: trace, refinement, realization,
binding, etc.

SCA Technical Overview
16 - 20 September 2002

Day 3 - 11

UML Diagrams

• Class Diagram – a static graphic presentation that
shows a collection of declarative model elements, such
as, classes, and their contents and relationships.

• StateChart Diagram – a diagram that depicts a State
Machine consisting of simple states, transitions, and
nested composite states.

• Activity Diagram – a diagram that depicts an activity
graph, which is a special case of a state machine,
where all or most of the states are activity states or
action states. Transitions are triggered by the
completion of activity in the source states.

• Use Case Diagram – a diagram that depicts the
relationships among actors and use cases within a
system.

SCA Technical Overview
16 - 20 September 2002

Day 3 - 12

UML Diagrams, cont'd

• Interaction Diagram – a diagram that describes
sequences of messages exchanges among roles that
implement behavior of a system.
– Collaboration Diagram – a diagram that depicts interactions

organized around roles
– Sequence Diagram – a diagram that depicts object interactions

arranged in time sequence.
• Component Diagram – a diagram that depicts the

organization and dependencies among component
types.

• Deployment Diagram – a diagram that depicts the
configuration of run-time processing nodes and the
software units (e.g., processes, component instances)
that execute on them.

SCA Technical Overview
16 - 20 September 2002

Day 3 - 13

Waveform Design

• UML Overview
• Service Definition
• Waveform Design Process

SCA Technical Overview
16 - 20 September 2002

Day 3 - 14

Service Definition
• Documented By a Service Definition Description (API Supplement

Appendix A) which describes the contract between the Service
Provider and the Service User
– Service States
– Relationships to other Services
– Services’ Description

• Synopsis
• Parameters
• Valid States for the Service
• Allowable State Transitions
• Response
• Originator
• Errors/Exceptions

– Allowable Sequence of Service Primitives.
– Precedence of Service Primitives.
– Service User Guidelines.
– UML
– IDL

SCA Technical Overview
16 - 20 September 2002

Day 3 - 15

Service Definition & Creation Guidelines
in Precedence Order

• Use existing API.
• Create a new API by inheriting an existing API and then

extending its services.
• Translate an existing non-JTRS API to IDL to create a

new JTRS API.
• Develop a new API based upon one or more Building

Blocks. Use of Building Blocks should follow the order
of using existing Building Blocks, extending existing
Building Blocks, generating new Building Blocks.

SCA Technical Overview
16 - 20 September 2002

Day 3 - 16

Service Definition Naming
Conventions

• Class, Interface, Package & Types names
– Starts with an uppercase letter
– Every word that composes the name starts with an uppercase

letter
– Words are run together (e.g., DomainManager)

• Methods and attributes
– Starts with a lowercase letter
– Every word that composes the name starts with an uppercase

letter (except the first one)
– Words are run together (e.g., getApplications)

• Constants & Enumeration Literals
– Every letter of a word is an uppercase letter.
– Multiple words are separated by an underline

SCA Technical Overview
16 - 20 September 2002

Day 3 - 17

Waveform Design

• UML Overview
• Service Definition
• Waveform Design Process

SCA Technical Overview
16 - 20 September 2002

Day 3 - 18

Waveform Design Process

• Build Waveform Analysis Model
• Build Waveform Language Interfaces
• Build Waveform Component Implementations
• Integrate Waveform Components

SCA Technical Overview
16 - 20 September 2002

Day 3 - 19

Waveform Design Process

Build Waveform
Analys is Model

Build Waveform
Language Interfaces

Build/Update Waveform
Component Implementat ions

Integrate Waveform
Components

WF UML
Analysis Model

Note: Industry refers to
this as a Platform
Independent Model
(PIM)

SCA APIs (e.g., Link) & Building Blocks
(e.g., MAC, Physical, Packet, etc.)

Waveform
Legacy

System Design

WF Implementation
Model

WF SAD
File

Build Waveform
Analys is Model

Build Waveform
Language Interfaces

Build/Update Waveform
Component Implementat ions

Integrate Waveform
Components

SCA CF
CORBA IDL

WF Component File (e.g., source
code, object code, XML)

WF CORBA IDL Model &
Interface file(s)

WF CORBA IDL Model &
Interface file(s)

WF Simulation
Model

SCA Technical Overview
16 - 20 September 2002

Day 3 - 20

Waveform Design Process

• Build Waveform Analysis Model
– Build Waveform UML Analysis Model
– Build Waveform Simulation Model

• Build Waveform Language Interfaces
• Build Waveform Component Implementations
• Integrate Waveform Components

SCA Technical Overview
16 - 20 September 2002

Day 3 - 21

Build Waveform Analysis Model

• Waveform UML Analysis Model – a service definition of
the waveform APIs in UML

– Captures the waveform APIs definition
– Captures Waveform components definitions

• Simulation Model – a simulation of the execution of an
application(s) against the real-world physical constraints
of the system.

SCA Technical Overview
16 - 20 September 2002

Day 3 - 22

Build Waveform UML Analysis
Model

• Build Waveform UML Analysis Model Activities
• Waveform Analysis UML Model Elements
• Waveform Analysis UML Model Examples

SCA Technical Overview
16 - 20 September 2002

Day 3 - 23

Build Waveform UML Analysis
Model Activities

• Identify functionality to be provided by the waveform
software { SCA Developer’s Guide section 6.1.2 }

• Determine which API Service Groups are needed {SCA
Developer’s Guide section 6.1.3 }

• Determine what services are needed beyond the API
Service Groups {SCA Developer’s Guide section 6.1.4 }

SCA Technical Overview
16 - 20 September 2002

Day 3 - 24

Identify Waveform Functionality

• Legacy Waveform Elements
• Use Cases
• Data, Control, and Events to and from a component
• HCI

SCA Technical Overview
16 - 20 September 2002

Day 3 - 25

Determine SCA API Service
Groups Needed

• Packet Services
• Networking Services

– MAC
– Logical Link Control

• I/O Services
• Physical Services

– Non-Real Time
– Real Time

SCA Technical Overview
16 - 20 September 2002

Day 3 - 26

Determine New API Service
Groups

• Extend Existing Service Group
– Adding functionality to existing Service Group
– Creates a new service within the same Service Group.
– Example – Cosite Service to Physical Services

• Define a New Service Group
– Examples – Audio, Cross-banding, Networking, Filters, etc.

• Extensions and New Service Groups can be specific to
waveform definition or submitted as a change to the API
Supplement.

SCA Technical Overview
16 - 20 September 2002

Day 3 - 27

Build Waveform UML Analysis
Model

• Build Waveform UML Analysis Model Activities
• Waveform UML Analysis Model Elements
• Waveform UML Analysis Model Examples

SCA Technical Overview
16 - 20 September 2002

Day 3 - 28

Waveform UML Analysis Model
Elements

• UML Concepts Utilized
– Model Elements

• Class – Service Component Definition & realization of services,
Types, Exceptions

• Interface – Service Definition
• Use Case – to define service functionality
• Actor – identifies the roles who are using the services
• Constraint – constraints denoted by the service
• Component – defines the provides and uses ports for a waveform

component.
• Node – where a waveform component can be or is deployed within

a system.

SCA Technical Overview
16 - 20 September 2002

Day 3 - 29

Waveform UML Analysis Model
Elements, cont’d

• UML Concepts Utilized
– Diagrams

• Class Diagram – Service Definition, Waveform Component Class
definition

• Use Case – Captures the requirements for a service definition
• Activity – Graphical captures the behavior requirements of an

operation or use case.
• StateChart – Captures a service’s states and state transitions
• Interaction - Allowable sequence of service primitives and

realization of a use case.
• Component – a components uses and provides port definitions

– Relationships
• Association, Aggregation, Composition, Generalization, and

Dependency are use to depict the definition of a service and
component.

SCA Technical Overview
16 - 20 September 2002

Day 3 - 30

Build Waveform UML Analysis
Model

• Build Waveform UML Analysis Model Activities
• Build Waveform UML Analysis Model Elements
• Build Waveform UML Analysis Model Examples

SCA Technical Overview
16 - 20 September 2002

Day 3 - 31

Build Waveform UML Analysis
Model Examples

• One-Layer Waveform - Physical
• Two-Layer Waveform - Physical & Media Access

Control (MAC)
• Three-Layer Waveform - Physical, MAC & Logical Link

Control (LLC)
• XYZ Assembly Controller

SCA Technical Overview
16 - 20 September 2002

Day 3 - 32

XYZ One-Layer UML Service
Examples

• One-Layer Waveform
– Analysis Packages
– XYZ Packet Interfaces
– XYZ Control Physical Interface
– XYZ Class
– XYZ Physical Component

SCA Technical Overview
16 - 20 September 2002

Day 3 - 33

One-Layer Waveform Overview

Modem

Provider Port 2

Provider Port 1

User Port 2
User Port 2

Additional
ControlResource

Log
Data

Data

Waveform
Physical

XYZ

SCA Technical Overview
16 - 20 September 2002

Day 3 - 34

XYZ One-Layer Waveform Analysis
Package Relationships Example

Packet BB
<<Analysis>>

+ Packet
+ PacketSignals
+ SimplePacket

XYZ
Waveform

<<Analysis>>

Physical NRT BB
<<Analysis>>

+ Antenna_Control
+ Media_Setup

+ Modulation_Setup
+ Physical_Management

+ Radio_Mode
+ Receive_Termination
+ Transciever_Setup
+ Transmit_Inhibit

CF Base
Application

<<Analysis>>

+ LifeCycle
+ Port

+ PortSupplier
+ PropertySet
+ Resource

+ ResourceFactory
+ TestableObject

Logging
Services

<<Analysis>>

uses

SCA Technical Overview
16 - 20 September 2002

Day 3 - 35

Extending a Service Group –
XYZ Packet Interfaces Example

TransmitPacket
<<interface>>

OctetSequence NullControlPhys

<<uses>>

ControlType
PayloadType

SimplePacket

pushPacket(control : in ControlType, payload : in PayloadType) : void
getMaxPayLoadSize() : UnsignedShort
getMinPayloadSize() : UnsignedShort

(from Packet BB)

<<interface>>

<<bind>>

UserProvider_Physical_XYZ

signalDetected(signalPresent : in Boolean) : void

<<interface>>

<<inherit>>

SCA Technical Overview
16 - 20 September 2002

Day 3 - 36

XYZ Control Interface Example

Constructing New & Combining Service Groups

Transmit_Inhibit

inhibitTransmit(Inhibit : in boolean) : boolean

(from Physical NRT BB)

<<Interface>>

XYZ_Mode

SetMode(mode : in ModeType) : void

<<interface>>

Control_Physical_XYZ
<<interface>>

<<inherit>>

SCA Technical Overview
16 - 20 September 2002

Day 3 - 37

XYZ Physical Class

XYZ Physical

Control_Physical_XYZ
<<interface>>

UserProvider_Physical_XYZ
<<interface>>

Resource
(from CF Base Application)

<<interface>>

Port
(from CF Base Application)

<<interface>>

Log
(from Logging Services)

<<interface>>
<<uses>>

<<realize>>

SCA Technical Overview
16 - 20 September 2002

Day 3 - 38

XYZ Physical Component Ports
Represents a
dependency to an
Interface that is realized
by another component

XYZ Physical
Component

A
Component

Control_Physic
al_XYZ

UserProvider_
Physical_XYZ

Resource

Port

Log
Service

Log

user port2

user port1

user port

provider port

provider port 2
user port 1 & 2

provider port 1

Represents an
Interface that is
realized by a
component

Another
Component

User Ports require Provides
Port(s) and implement the
CF Port Interface

SCA Technical Overview
16 - 20 September 2002

Day 3 - 39

XYZ Two-Layer Waveform UML
Service Examples

• Two-Layer Waveform
– Two-Layer Analysis Packages
– XYZ MAC Interface
– XYZ Mac Class
– XYZ MAC Component

SCA Technical Overview
16 - 20 September 2002

Day 3 - 40

Two-Layer Waveform Example

to/from
attached
layer

Assembly
Controller

Waveform
Physical Layer

Modem

Waveform
MAC Layer

SCA Technical Overview
16 - 20 September 2002

Day 3 - 41

XYZ Two-Layer Waveform Analysis
Package Relationships Example

Packet BB
<<Analysis>>

+ Packet
+ PacketSignals
+ SimplePacket

XYZ
Waveform

<<Analysis>>

Physical NRT BB
<<Analysis>>

+ Antenna_Control
+ Media_Setup

+ Modulation_Setup
+ Physical_Management

+ Radio_Mode
+ Receive_Terminat ion
+ Transciever_Setup
+ Transmit_Inhibit

CF Base
Application

<<Analysis>>

+ LifeCycle
+ Port

+ PortSupplier
+ PropertySet
+ Resource

+ ResourceFactory
+ TestableObject

Logging
Services

<<Analysis>>

MAC BB
<<Analysis>>

+ ChannelErrorControl

SCA Technical Overview
16 - 20 September 2002

Day 3 - 42

XYZ MAC Interface Example

TransmitPacket
<<interface>>

OctetSequence NullControlPhys

ControlType
PayloadType

SimplePacket

pushPacket(control : in ControlType, payload : in PayloadType) : void
getMaxPayLoadSize() : UnsignedShort
getMinPayloadSize() : UnsignedShort

(from Packet BB)

<<interface>>

<<uses>>

<<bind>>

Provider_MAC_XYZ
<<interface>>

ChannelErrorControl

ChannelErrorControl(errorControl : in Boolean) : void

(from MAC BB)

<<interface>>

User_MAC_XYZ

errorDetected(errorPresent : in Boolean) : void

<<interface>>

SCA Technical Overview
16 - 20 September 2002

Day 3 - 43

XYZ MAC Class

XYZ PhysicalXYZ_MAC
11

+serviceProvider

1

+serviceUser

1

Port
(from CF Base Application)

<<interface>>

Resource
(from CF Base Application)

<<interface>>

Log
(from Logging Services)

<<interface>>

UserProvider_Physical_XYZ
<<interface>>

<<realize>>

<<realize>>

Provider_MAC_XYZ
<<interface>>

User_MAC_XYZ
<<interface>>

<<uses>>
<<uses>>

SCA Technical Overview
16 - 20 September 2002

Day 3 - 44

XYZ MAC Component Ports

XYZ Physical
Component

Control_Physica
l_XYZ

Resource

Port

Log
Service

Log

user port2

user port1

user port 3

Represents an
Interface that is realized
by the component

Represents a
dependency to an
Interface that is realized
by another component

Another
Component

provider port 2

user port 1 & 2

XYZ MAC
COmponent

UserProvider_
Physical_XYZ

provider port 1

Provider_MAC_
XYZ

provider port 4

user port 4

MAC User
Component

User_MAC_XYZ
provider port 5

user port 5

provider port 3

user port 3,4,5

User Ports require Provides
Port(s) and implement the
CF Port Interface

SCA Technical Overview
16 - 20 September 2002

Day 3 - 45

XYZ Three-Layer Waveform
UML Service Examples

• Three-Layer Waveform
– Packages
– XYZ Logical Link Control Queue Interfaces
– XYZ Logical Link Control Provider Interface
– XYZ Logical Link Control User Interface
– XYZ Logical Link Control Local Management Interfaces
– XYZ Logical Link Control Class
– XYZ Logical Link Component

SCA Technical Overview
16 - 20 September 2002

Day 3 - 46

Three Layer Waveform Example

 to/from
 network

Modem

Waveform
Physical Layer

Assembly
Controller

Waveform
MAC Layer

Waveform
LLC Layer

SCA Technical Overview
16 - 20 September 2002

Day 3 - 47

XYZ Three-Layer Waveform Analysis
Package Relationships Example

Packet BB
<<Analysis>>

+ Packet
+ PacketSignals
+ SimplePacket

XYZ
Waveform

<<Analysis>>

Physical NRT BB
<<Analysis>>

+ Antenna_Control
+ Media_Setup

+ Modu lation_Setup
+ Physical_Management

+ Radio_Mode
+ Receive_Termination
+ Transciever_Setup
+ Transmit_Inhibit

CF Base
Application

<<Analysis>>

+ LifeCycle
+ Port

+ PortSupplier
+ PropertySet
+ Resource

+ ResourceFactory
+ TestableObject

Logging
Services

<<Analysis>>

MAC BB
<<Analysis>>

+ ChannelErrorControl

Connectionless BB
<<Analysis>>

(from LLC BB)
+ IndicatorHeaderType

+ Provider
+ ProviderQueue

+ RequestHeaderType
+ User

+ UserQueue

uses

LLC BB
+ DLSAPAddressType

+ PacketErrorType
+ ServiceErrorType

LocalManagement
BB

(from LLC BB)
+ Provider

+ User

SCA Technical Overview
16 - 20 September 2002

Day 3 - 48

XYZ LLC Connectionless Queue
Interfaces Example

ControlType
PayloadType

Packet

pushPacket(priority : in Octet, control : in ControlType, payload : in PayloadType) : void
spaceAvailable(priori tyQueueId : in Octet) : PayloadSizeType
enableFlowControl(enable : in Boolean) : void
enableEmptySignal(enableEmptySignal : in Boolean) : void
setNumOfPriorityQueues(numOfPriorities : in Octet) : void
getMaxPayLoadSize() : UnsignedShort
getMinPayloadSize() : UnsignedShort
getNumOfPriori tyQueues() : Octet

(from Packet BB)

<<interface>>

ProviderQueue
<<interface>> UserQueue

<<interface>>

<<bind>>
<<bind>>

RequestHeaderType
destinationAddress : DLSAPAddressType
priority : UnsignedLong

OctetSequence
(from XYZ Waveform)

IndicatorHeaderType
destinationAddress : DLSAPAddressType
sourceAddress : DLSAPAddressType
groupAddress : Boolean

DLSAPAddressType

sap : UnsignedLong
address : OctetSequence

(from LLC BB)

dependency

SCA Technical Overview
16 - 20 September 2002

Day 3 - 49

XYZ LLC Connectionless
Provider Interface

ProviderQueue
<<interface>>

PacketSignals

signalHighWaterMark(priorityQueueID : in Octet) : void
signalLowWaterMark(priorityQueueID : in Octet) : void
signalEmpty() : void

(from Packet BB)

<<interface>>

Provider
<<interface>>

SCA Technical Overview
16 - 20 September 2002

Day 3 - 50

XYZ LLC Connectionless User
Interface Example

UserQueue
<<interface>>

PacketSignals

signalHighWaterMark(priorityQueueID : in Octet) : void
signalLowWaterMark(priorityQueueID : in Octet) : void
signalEmpty() : void

(from Packet BB)

<<interface>>

User
<<interface>>

DLSAPAddressType

sap : UnsignedLong
address : OctetSequence

(from LLC BB)
PacketErrorType

usageError : ServiceErrorType
errNo : UnsignedLong

(from LLC BB)

Dependency

Inherit

SCA Technical Overview
16 - 20 September 2002

Day 3 - 51

XYZ LLC Local Management
Interfaces Example

BindResponse
Type

Provider

getInfo(connectionID : in String, info : out InfoType) : void
bind(connectionID : in String, bindReq : in BindRequestType, bindResp : out BindResponseType) : void
unbind(connectionID : in String) : void
subsBind(connectionID : in String, address : inout DLSAPAddressType) : void
subsUnbind(connectionID : in String, address : in DLSAPAddressType) : void
enableMulticast(connectionID : in String, address : in OctetSequence) : void
disableMulticast(connectionID : in String, address : in OctetSequence) : void
enablePromiscuousMode(connectionID : in String, level : in PromiscuousModeType) : void
disablePromiscuousMode(connectionID : in String, level : in PromiscuousModeType) : void
getMaxTU() : UnsignedLong
getMinTU() : UnsignedLong

<<interface>>

User

getConnectionID() : String

<<interface>>

InfoType BindRequestType DLSAPAddressType
(from LLC BB)

Promiscuous
ModeType

SCA Technical Overview
16 - 20 September 2002

Day 3 - 52

XYZ LLC Class Example

XYZ_MACXYZ_LLC
11

+serviceProvider

1

+serviceUser

1

Provider
(from Connectionless BB)

<<interface>>

User
(from Connectionless BB)

<<interface>>

User_MAC_XYZ
<<interface>>

Provider_MAC_XYZ
<<interface>>

Port
(from CF Base Application)

<<interface>>
Resource

(from CF Base Application)

<<interface>>

<<realize>>

<<uses>>

Log
(from Logging Services)

<<interface>>

Provider
(from LocalManagement BB)

<<interface>>

User
(from LocalManagement BB)

<<interface>>

SCA Technical Overview
16 - 20 September 2002

Day 3 - 53

XYZ LLC Component Ports

Log
Service

Represents an
Interface that is realized
by the component

Represents a
dependency to an
Interface that is realized
by another component

XYZ MAC
COmponent

user port 4

XYZ LLC
Component

user port 5

user port 6

uses port 7

Port

user port 6,7,8,9

Provider
provider port 5

Resource

Provider_MAC_XYZ

Log

user port 3,4,5

provider port 3

User_MAC_XYZ

A
Component

User

user port 8

Provider User

provider port 4

LLC Local Management
Interfaces

user port 9

User Ports require Provides
Port(s) and implement the
CF Port Interface

SCA Technical Overview
16 - 20 September 2002

Day 3 - 54

XYZ Waveform Assembly
Controller

• Three-Layer Waveform
– XYZ Assembly Controller Class
– XYZ Assembly Controller Component

SCA Technical Overview
16 - 20 September 2002

Day 3 - 55

XYZ Assembly Controller
Relationships

 to/from
 attached app

Modem

Waveform
Physical Layer

User
Interface

Waveform
MAC Layer

Waveform
LLC Layer

Assembly
Controller

SCA Technical Overview
16 - 20 September 2002

Day 3 - 56

XYZ Assembly Controller Class

Resource
(from CF Base Application)

<<interface>>

XYZ_LLC

XYZ_MAC

1

1

+serviceUser
1

+serviceProvider1

XYZ Physical

1

1

+serviceUser
1

+serviceProvider1

XYZ_Assembl
yController

<<realize>>

11

+resourceController

11

+resourceController

11

+resourceController

<<uses>>
Port

(from CF Base Application)

<<interface>>

Log
(from Logging Services)

<<interface>>

SCA Technical Overview
16 - 20 September 2002

Day 3 - 57

Assembly Controller
Component Ports

XYZ_AssemblyController

Resource

XYZ LLC
Component

XYZ MAC
COmponent

XYZ Physical
Component

Port
user port 10,11,12user port 3,4,5

user port 1 & 2
user port 6,7,8,9

Log

user port 10,11,12,13

user port 13

User_MA
C_XYZ

User Ports require Provides
Port(s) and implement the
CF Port Interface

SCA Technical Overview
16 - 20 September 2002

Day 3 - 58

Build Waveform Analysis Model
Activities

• Waveform UML Analysis Model – a service definition of
the waveform APIs in UML

– Captures the waveform APIs definition
– Captures Waveform components definitions

• Simulation Model – a simulation of the execution of an
application(s) against the real-world physical constraints
of the system.

SCA Technical Overview
16 - 20 September 2002

Day 3 - 59

Waveform Simulation Model

• Simulation Model Elements
– Trigger Generator
– Waveform Processing Elements
– Resource Model
– Statistic Gathering

• Simulation Modeling Activities
• Simulation Model Summary

SCA Technical Overview
16 - 20 September 2002

Day 3 - 60

Simulation Model Elements
Example

SCA Technical Overview
16 - 20 September 2002

Day 3 - 61

• Traffic Generators
– Traffic Generators provide stimulus for waveform models

in the form of transmit and receive events.

– Attributes of traffic events are message type
(such as voice, data or packet data), message size and arrival rate.

– Message size and arrival rate often have statistical distributions
derived from
field test data, or from higher-level simulations of battlefield scenarios.

– Traffic Generators can also be used to create inputs for software
testing.

Simulation Traffic Generators

SCA Technical Overview
16 - 20 September 2002

Day 3 - 62

Simulation Waveform
Processing Modules

• Maps to the Waveform classes and components in the
Waveform UML Analysis Model
– Contains the APIs and Message definitions for the waveform

SCA Technical Overview
16 - 20 September 2002

Day 3 - 63

• Resource(Capacity) Models
– Resource models represent discrete processing resources in

the system.
– The resources may be processors, interfaces, or hardware

devices.
– Processing events seize resources on execution.
– The allocation of resources to waveform processing objects

defines the physical processing architecture of the waveform
operating in the real system.

Simulation Resource Model

SCA Technical Overview
16 - 20 September 2002

Day 3 - 64

• Statistic Gathering
– Performance analysis focuses on requirements and design

verification, resource utilization and timing budget allocation.
Several waveforms are run concurrently to show simultaneous
waveform operation.

– Gathered queue statistics determine optimum data storage and
buffer sizes.

– Risks in achieving continuous data streams to user outputs are
identified. Test cases to be analyzed are based on concept of
operations.

– Provides feedback to the Waveform UML Analysis Model
• Deployment constraints and capacity needed

Simulation Statistic Gathering

SCA Technical Overview
16 - 20 September 2002

Day 3 - 65

Simulation Goals. Simulation of waveforms results in early performance estimates.

Goal Approach Modeling Outputs

Verify processor utilization Simulate waveform processing against a
model of the physical resources

CPU Utilization for each processor

Verify timing Model delays through the hardware and
software based on physical architecture and
processing work load.

Estimates of event latencies such as
Attack and Release times, and end
to end performance

Analyze a variety of
waveforms running
concurrently

Create models of each waveform that
compete for discrete resources

CPU Utilization for each resource
and latencies for each waveform

Investigate queuing Model queues of resource grabs and
queues of data and messaging services

Queue statistics such as max imum
size, empty times (important for
continuous data requirements),
overrun.

Determine timing budgets of
physical components

Model all components in a resource model
that has timing budgets. Enter budgets
values and run waveforms to make sure
budgets support waveform timing
requirements

Detailed delay analysis of waveform
events propagating through the
system.

Early simulation of WF and CF operations provide insight into hardware
requirements.

Simulation Modeling Activities

SCA Technical Overview
16 - 20 September 2002

Day 3 - 66

• Modeling significantly reduces the risks in porting. It is
easy to modify resource models and resource
allocations for new JTR Set LRUs.

• If the models use the XML descriptor files, then the task
is simplified.

• To get an early indication of performance issues in
porting to a new system or architecture, a new resource
model is generated that matches the new target. Then
the waveform simulations are run with the new physical
architecture model to evaluate performance.

Simulation Model Summary

SCA Technical Overview
16 - 20 September 2002

Day 3 - 67

Waveform Design Process

• Build Waveform Analysis Model
• Build Waveform Language Interfaces
• Build Waveform Component Implementations
• Integrate Waveform Components

SCA Technical Overview
16 - 20 September 2002

Day 3 - 68

Build Waveform Language
Interfaces

• A refinement of the interfaces defined in the WF
Analysis Model.

• Create Platform or Technology-specific interfaces
– CORBA
– Java
– C APIs

SCA Technical Overview
16 - 20 September 2002

Day 3 - 69

Build WF CORBA Interfaces

• Build UML model of interface { SCA Developer’s Guide section
6.2 }

• Generate IDL from UML model of interface {SCA
Developer’s Guide section 5.2 }

• Translate IDL into language-appropriate implementation
files {SCA Developer’s Guide section 5.3 }

• Compile code generated {SCA Developer’s Guide section 5.4 }

• Reverse engineer UML model from language-specific
implementation files {SCA Developer’s Guide section 5.5 }
(optional)

SCA Technical Overview
16 - 20 September 2002

Day 3 - 70

Waveform CORBA Interface
Model Elements

• UML Concepts Utilized
– Model Elements

• Class (with CORBA Stereotypes, UML profile for CORBA)
• Package (CORBAModule stereotype)
• Component – CORBA Module

– Diagrams
• Class Diagram – captures CORBA types, exceptions and interface

definitions.
• Component Diagram – CORBA Module component and the

interfaces realized within the CORBA Module
– Relationships

• Composition, Generalization, Dependency used to define the
CORBA interfaces and types.

SCA Technical Overview
16 - 20 September 2002

Day 3 - 71

Waveform CORBA Naming
Conventions

• APIs and building blocks should use scoped names.
For example, the API set for LOS may have the
following module hierarchy:
module LOS {

module Physical {
}
module Mac {
}

}

SCA Technical Overview
16 - 20 September 2002

Day 3 - 72

Waveform CORBA Naming
Conventions, cont’d

• Class, Interface, Package & Types names
– Starts with an uppercase letter
– Every word that composes the name starts with an uppercase

letter
– Words are run together (e.g., DomainManager)

• Methods and attributes
– Starts with a lowercase letter
– Every word that composes the name starts with an uppercase

letter (except the first one)
– Words are run together (e.g., getApplications)

• Constants & Enumeration Literals
– Every letter of a word is an uppercase letter.
– Multiple words are separated by an underline

SCA Technical Overview
16 - 20 September 2002

Day 3 - 73

Create Waveform CORBA UML
Model

• Create a new Model file using UML Profile for CORBA
• A Refinement of the Waveform Analysis UML model

– UML Interface map to CORBAInterface
• Additional grouping of interfaces to form a unified interface
• Show mapping to interfaces in the Waveform Analysis model using a refine

relationship
• Copy and paste types and interfaces from analysis model to CORBA model

– Convert to CORBA stereotypes. Note in Rational Rose 2000-2002
version CORBAInterface is Interface, no change necessary.

– Translate UML syntax into CORBA syntax
• Stereotype
• Types

– Create CORBA Module packages and components
• Module component realizes the CORBA interfaces.

• Uses Services’ CORBA interfaces
– As separate UML packages that can be loaded/Imported into a model

SCA Technical Overview
16 - 20 September 2002

Day 3 - 74

Generate IDL Files

• Create the IDL Files from the UML model.
– IDL generation can happen from the component view or logical

view

• UML Tool Additional Features
– Browse the IDL
– Reverse Engineer IDL
– Syntax check

SCA Technical Overview
16 - 20 September 2002

Day 3 - 75

Translate IDL Into Language
Implementation files & Compile

SCA Technical Overview
16 - 20 September 2002

Day 3 - 76

Reverse Engineering Generated
Code

• Create UML packages from generated source files
(e.g., C++ h & cpp) from IDL compiler.
– CF
– Log Service
– Event Service
– Waveform
– Services

• Generated UML Classes
– Client-Side Class Names are the same as the CORBA module

and CORBA interface names.
– Var type classes (e.g., XYZ_var) are managers of object

pointers
– Server-Side Class names are POA type classes (e.g.,

POA_XYZ), which are used by server-side implementation
classes (servants).

SCA Technical Overview
16 - 20 September 2002

Day 3 - 77

XYZ UML CORBA Interface
Examples

• Package Relationships
• XYZ CORBA Modules
• XYZ Packet Interfaces
• XYZ Control Physical Interface
• Unified XYZ Physical Interface
• Partitioned XYZ Physical Interface
• XYZ MAC Interface
• Logical Link Control ProviderQueue Interface
• Logical Link Control UserQueue Interface
• Logical Link Control Provider Interface
• Logical Link Control User Interface
• LLC Local Management Interface

SCA Technical Overview
16 - 20 September 2002

Day 3 - 78

XYZ CORBA Module Package
Relationships

Packet
<<CORBAModule>>

+ PacketSignals

Packet BB
<<Analysis>>

+ Packet
+ PacketSignals
+ SimplePacket

XYZ Waveform
<<Analysis>>

+ Control_Physical_XYZ
+ NullControlPhys

+ Provider_MAC_XYZ
+ TransmitPacket

+ UserProvider_Physical_XYZ
+ User_MAC_XYZ

+ XYZ Physical
+ XYZ_Mode

Physical NRT BB
<<Analysis>>

+ Antenna_Control
+ Media_Setup

+ Modulation_Setup
+ Physical_Management

+ Radio_Mode
+ Receive_Termination
+ Transciever_Setup
+ Transmit_Inhibit

CF Base
Application

<<Analysis>>

+ LifeCycle
+ Port

+ PortSupplier
+ PropertySet
+ Resource

+ ResourceFactory
+ TestableObject

Logging
Services

<<Analysis>>

MAC BB
<<Analysis>>

+ ChannelErrorControl

Connectionless BB
<<Analysis>>

(from LLC BB)
+ IndicatorHeaderType
+ RequestHeaderType

XYZ
<<CORBAModule>>

refine

uses

CF
<<CORBAModule>>

+ Port
+ Resource

uses

PhysicalNonRealTimeAPI
<<CORBAModule>>

+ Transmit_Inhibit

MAC
+ ChannelErrorControl

LocalManagement
BB

(from LLC BB)
+ Provider

+ User

LLC BB
+ DLSAPAddressType

+ PacketErrorType
+ ServiceErrorType

SCA Technical Overview
16 - 20 September 2002

Day 3 - 79

XYZ’s sub CORBA Modules

XYZ_MAC
<<CORBAModule>>

+ NullControlMAC
+ Provider_MAC_XYZ

+ User_MAC_XYZ

XYZ_Physical_NRT
<<CORBAModule>>

+ ModeType
+ SetMode

XYZ_Physical_RT
<<CORBAModule>>

+ NullControlPhys
+ TransmitPacketPhys

+ UserProvider_Physical_XYZ

SCA Technical Overview
16 - 20 September 2002

Day 3 - 80

XYZ Packet CORBA Interfaces

TransmitPacketPhys

pushPacket(control : in NullControlPhys, payload : in CF::OctetSequence) : void

<<CORBAInterface>>

UserProvider_Physical_XYZ

signalDetected(signalPresent : in boolean) : void

<<CORBAInterface>>

OctetSequence
(from CF)

<<CORBATypedef>>

TransmitPacket
(from XYZ Waveform)

<<interface>>

UserProvider_Physical_XYZ
(from XYZ Waveform)

<<interface>>

<<uses>>

<<refine>>

<<inherit>>

<<refine>>

NullControlPhys
dummy : char

<<CORBAStruct>>

<<uses>>

SCA Technical Overview
16 - 20 September 2002

Day 3 - 81

XYZ Control Physical CORBA
Interface

Control_Physical_XYZ
<<CORBAInterface>>

SetMode
(f rom XYZ_Physical _NRT)

<<CORBAInterface>>Transmit_Inhibit

inhibitTransmit(Inhibit : in boolean) : boolean

(from PhysicalNonRealTimeAPI)

<<CORBAInterface>>

Control_Physical_XYZ
(from XYZ Waveform)

<<interface>>
<<refine>>

ModeType

VOICE_MODE
DATA_MODE

(from XYZ_Physical_NRT)

<<CORBAEnum>>

<<uses>>

SCA Technical Overview
16 - 20 September 2002

Day 3 - 82

Unified IDL Design for XYZ
Physical Layer

Control_Physical_XYZ
<<CORBAInterface>>

XYZ_Physical_Interface
<<CORBAInterface>>

Port
(from CF)

<<CORBAInterface>>
Resource

(from CF)

<<CORBAInterface>>
UserProvider_Physical_XYZ

(from XYZ_Physical_RT)

<<CORBAInterface>>

SCA Technical Overview
16 - 20 September 2002

Day 3 - 83

Partitioned IDL Design for XYZ
Physical Layer

Resource
(from CF)

<<CORBAInterface>>
Port

(from CF)

<<CORBAInterface>>
Control_Physical_XYZ

<<CORBAInterface>> UserProvider_Physical
_XYZ

(from XYZ_Physical_RT)

<<CORBAInterface>>

XYZ_Physicial_Control
_Interface

<<CORBAInterface>>

XYZ_Physical_Packets_Interface
<<CORBAInterface>>

SCA Technical Overview
16 - 20 September 2002

Day 3 - 84

XYZ MAC CORBA Interfaces

Provider_MAC_XYZ
<<CORBAInterface>>

User_MAC_XYZ

errorDetected(errorPresent : in boolean) : void

<<CORBAInterface>>

ChannelErrorControl

ChannelErrorControl(ErrorControl : in boolean) : void

(from MACAPI)

<<Interface>>
TransmitPacketPhys

pushPacket(control : in NullControlPhys, payload : in CF::OctetSequence) : void

(from XYZ_Physical_RT)

<<CORBAInterface>>

Provider_MAC_XYZ
(from XYZ Waveform)

<<interface>>

User_MAC_XYZ
(from XYZ Waveform)

<<interface>>

<<refine>>

<<refine>>

SCA Technical Overview
16 - 20 September 2002

Day 3 - 85

Logical Link Control Connectionless
ProviderQueue CORBA Interface

ProviderQueue

pushPacket(priority : in octet, control : in RequestHeaderType, payload : in CF::OctetSequence) : void
spaceAvailable(priorityQueueID : in octet) : unsigned long
enableFlowControlSignals(enable : in boolean) : void
enableEmptySignal(enable : in boolean) : void
setNumOfPriorityQueues(numOfPriorities : in octet) : void

<<CORBAInterface>>

ProviderQueue
(from Connectionless BB)

<<interface>>

OctetSequence
(from CF)

<<CORBATypedef>>RequestHeaderType

destinationAddress : DLSAPAddressType
priority : unsigned long

(from LLC)

<<CORBAStruct>>

DLSAPAddressType

sap : unsigned long
address : CF::OctetSequence

(from LLC)

<<CORBAStruct>>

<<uses>>

<<refine>>

SCA Technical Overview
16 - 20 September 2002

Day 3 - 86

Logical Link Control Connectionless
UserQueue CORBA Interface

UserQueue

pushPacket(priority : in octet, control : in IndicatorHeaderType, payload : in CF::OctetSequence) : void
spaceAvailable(priorityQueueID : in octet) : short
enableFlowControlSignals(enable : in boolean) : void
enableEmptySignal(enable : in boolean) : void
setNumOfPriorityQueues(numOfPriorities : in octet) : void

<<CORBAInterface>>

UserQueue
(from Connectionless BB)

<<interface>>
<<refine>>

IndicatorHeaderType

destinationAddress : DLSAPAddressType
sourceAddress : DLSAPAddressType
isGroupAddress : boolean

(from LLC)

<<CORBAStruct>>

OctetSequence
(from CF)

<<CORBATypedef>>

DLSAPAddressType

sap : unsigned long
address : CF::OctetSequence

(from LLC)

<<CORBAStruct>>

<<uses>>

SCA Technical Overview
16 - 20 September 2002

Day 3 - 87

Logical Link Control Provider
CORBA Interface

PacketSignals

signalHighWaterMark(priorityQueueID : in Octet) : void
signalLowWaterMark(priorityQueueID : in Octet) : void
signalEmpty() : void

(from Packet)

<<CORBAInterface>>

Provider
<<CORBAInterface>>

ProviderQueue
maxPayloadSize : unsigned short
minPayloadSize : unsigned short

pushPacket()
spaceAvailable()
enableFlowControlSignals()
enableEmptySignal()
setNumOfPriori tyQueues()

<<CORBAInterface>>

Provider
(from Connectionless BB)

<<interface>>
<<refine>>

SCA Technical Overview
16 - 20 September 2002

Day 3 - 88

Logical Link Control Connectionless
User CORBA Interface

UserQueue
maxPayloadSize : unsigned short
mainPayloadSize : unsigned short

pushPacket()
spaceAvailable()
enableFlowControlSignals()
enableEmptySignal()
setNumOfPriorityQueues()

<<CORBAInterface>>

User

signalError(destinationAddress : in DLSAPAddressType, error : in PacketErrorType) : void

<<CORBAInterface>>

PacketSignals

signalHighWaterMark()
signalLowWaterMark()
signalEmpty()

(from Packet)

<<CORBAInterface>>

User
(from Connectionless BB)

<<interface>>
<<refine>>

PacketErrorType

usageError : ServiceErrorType
errNo : unsigned long

(from LLC)

<<CORBAStruct>>
DLSAPAddressType

sap : unsigned long
address : CF::OctetSequence

(from LLC)

<<CORBAStruct>>

SCA Technical Overview
16 - 20 September 2002

Day 3 - 89

Logical Link Control Local
Management CORBA Interfaces

Provider

getInfo(connectionID : in string, info : out InfoType) : void
bind(connectionID : in string, bindReq : in BindRequestType, bindResp : out BindResponseType) : void
unbind(connectionID : in string) : void
subsBind(connectionID : in string, address : inout DLSAPAddressType) : void
subsUnbind(connectionID : in string, address : in DLSAPAddressType) : void
enableMulticast(connectionID : in string, address : in CF::OctetSequence) : void
disableMulticast(connectionID : in string, address : in CF::OctetSequence) : void
enablePromiscuousMode(connectionID : in string, level : in PromiscuousModeType) : void
disablePromiscuousMode(connectionID : in string, level : in PromiscuousModeType) : void

<<interface>>

BindRequestType
<<CORBAStruct>>

BindResponseType
<<CORBAStruct>>

InfoType
<<CORBAStruct>>

PromiscuousModeType
<<CORBAEnum>>

DLSAPAddressType
(from LLC)

<<CORBAStruct>>

OctetSequence
(from CF)

<<CORBATypedef>>

User
<<interface>>

Provider
(from LocalManagement BB)

<<interface>>

User
(from LocalManagement BB)

<<interface>>

<<refine>>

<<refine>>

SCA Technical Overview
16 - 20 September 2002

Day 3 - 90

Waveform Design Process

• Build Waveform Analysis Model
• Build Waveform Language Interfaces
• Build Waveform Component Implementations
• Integrate Waveform Components

SCA Technical Overview
16 - 20 September 2002

Day 3 - 91

Build Waveform Component
Implementations

• Build Waveform UML Implementation model of
waveform software { SCA Developer’s Guide section 6.3 }

• Generate language-appropriate source files for servant
and user software {SCA Developer’s Guide section 5.7 }

• Complete Language Source Files Coding
• Create XML for each component {SCA Developer’s Guide

section 5.8 }

• Build User Interface {SCA Developer’s Guide section 8 } (optional)

SCA Technical Overview
16 - 20 September 2002

Day 3 - 92

Build Waveform Implementation
Model

• Create Waveform Implementation Model
• Waveform UML Implementation Model Elements
• Waveform Resource Component Implementations
• XYZ Component Design Implementation Examples

SCA Technical Overview
16 - 20 September 2002

Day 3 - 93

Create Waveform
Implementation Model

• Create a new Model file using UML Language Profile(s) (C++,
Java, etc.) for Waveform Implementation
– UML Tool can act as File Browser with configuration management for

all the waveform artifacts.
• Most UML tools supports add-in capability for a configuration tool

– Component View can contain all the waveform artifacts that make up
the waveform.

• Each different artifact category (e.g., type of software) could map to a
different component package in the component view

• Types of waveform artifacts that are deployed on the various re-
programmable devices

– General-Purpose Processor (GPP) that runs CORBA ORBS – software
usually written in High-Order language (e.g., ANSI C++ language)

– Digital Signal Processors (DSP) – software usually written in ANSI C
language

– FPGAs – software usually written in VHDL
– Deployment View can capture the waveform artifacts on the re-

programmable devices and the devices that are used by the artifacts.

SCA Technical Overview
16 - 20 September 2002

Day 3 - 94

Create Waveform
Implementation Model, cont’d

• A Refinement of the Waveform UML Analysis model and realization
of the Language interface models (e.g., CORBA)
– Logical View

• Create Waveform Functionality Packages
– One package for the Waveform Implementation with nested sub-

packages based upon functionality and/or language of artifact (e.g.,
physical, MAC, LLC, etc.).

• Create Servant classes that refine the corresponding analysis class and
implements the corresponding language interfaces

• Create classes (stereotyped for C language) for DSP functionality

• Uses the Reversed Engineered packages associated with the
Language Generated Source Code from CORBA IDL Compilers
– As separate UML packages that can be loaded/Imported into a model
– Provides CORBA interface definition in the native implementation

language

SCA Technical Overview
16 - 20 September 2002

Day 3 - 95

Build Waveform Implementation
Model

• Create Waveform Implementation Model
• Waveform UML Implementation Model Elements
• Waveform Resource Component Implementations
• XYZ Component Design Implementation Examples

SCA Technical Overview
16 - 20 September 2002

Day 3 - 96

Waveform Implementation
Model Elements

• UML Concepts Utilized
– Model Elements

• Class – Waveform Artifact design implementation definition for
waveform interfaces. Artifacts are implemented in High-Order
Languages (e.g. C++, Java, C. etc.).

• Package – contains the Waveform artifact design implementations
• Use Case – realization of the of the use cases using the waveform

servant classes.
• Component – Waveform Artifacts (e.g., main server programs,

header and body source files (e.g., h, cpp,c), XML files, etc.)
• Node – where a waveform artifact can be or is deployed within a

system.

SCA Technical Overview
16 - 20 September 2002

Day 3 - 97

Waveform Implementation
Model Elements, cont’d

• UML Concepts Utilized
– Diagrams

• Class Diagram – Waveform Artifact (e.g., classes, etc.) Definitions
• Use Case – Captures the design realization of the use case
• Interaction - design realization of the use case.
• Component – Waveform artifacts – component and main program

source files, XML files, etc.
– Relationships

• Aggregation, Composition, Generalization, and Dependency are
use to depict the definition of waveform artifacts and components.

SCA Technical Overview
16 - 20 September 2002

Day 3 - 98

Build Waveform Implementation
Model

• Create Waveform Implementation Model
• Waveform UML Implementation Model Elements
• Waveform Resource Component Implementations
• XYZ Component Design Implementation Examples

SCA Technical Overview
16 - 20 September 2002

Day 3 - 99

Waveform Resource
Component Implementations

• Gives out provides and uses port in the form of CORBA
Interoperable Object References (IORs).
– Provides Port is a CORBA interface implemented by a servant

on the server side.
– Uses Port requires a specific CORBA interface(s) to use.

• The CF Resource getPort operation returns a CORBA
Object reference, which all CORBA objects are derived
from.
– The getPort operation can delegate this behavior to other

operations or simply does a lookup to return a port object
reference.

• Note: All CORBA objects can be widened to a CORBA
Object type.

SCA Technical Overview
16 - 20 September 2002

Day 3 - 100

Waveform Resource Component
Provides Port Implementations

• Provides port can be implemented using TIE or non-
TIE approach, provided the compiler generated the
corresponding code.
– TIE

• In C++, the servant software must instantiate the IDL-generated
template skeleton class.

– Non-TIE
• In C++, the servant software must inherit from the IDL-generated

skeleton class.

– The logical Provides port name is associated with the servant
software (class).

– Note: Servant software can support multiple interface
implementations.

SCA Technical Overview
16 - 20 September 2002

Day 3 - 101

Waveform Resource Component
Uses Port Implementations

• Uses port implement the CF Port interface.
• Uses port software maintains one or more pointers (of

the correct type) to the servant.
• In C++, recommendation is to use the CORBA

“XYZ”_var type, because this "intelligent pointer"
relieves the programmer of most responsibilities relating
to memory management.

• When the Uses Port is associated with multiple provides
port the code has more checking to do.
– Ensures the right interface type is being specified and places

the Provides port object reference with the appropriate code.
– For multiple providers with the same interface type the

connection identifier has be used as the discriminator.

SCA Technical Overview
16 - 20 September 2002

Day 3 - 102

Build Waveform Implementation
Model

• Create Waveform Implementation Model
• Waveform UML Implementation Model Elements
• Waveform Resource Component Implementations
• XYZ Component Design Implementation Examples

SCA Technical Overview
16 - 20 September 2002

Day 3 - 103

XYZ Component Design
Implementation Examples

• Partitioned Design for XYZ Physical
• Unified Design for XYZ Physical Interface
• XYZ MAC Design Implementation
• XYZ Logical Link Design Implementation
• XYZ Assembly Controller Design Implementation

SCA Technical Overview
16 - 20 September 2002

Day 3 - 104

Partitioned Design for XYZ's
Physical Layer

composition

Port
(from POA_CF)

Resource
(from POA_CF)

XYZ_Physical_C
ommunicate

performAction()

UserProvider_Physical_XYZ
(from POA_XYZ_Physical_RT)

UserProvider_Physical_XYZ_var
(from XYZ_Physical_RT)

XYZ_Physical_Pa
ckets

pushPacket()
signalDetected...
connectPort()
disconnectPort()

<<uses>>

-userVar

Log_var
(from LogService)

-logVar

XYZ_Physical_Control
agcSquelch : long = 0
noiseSquelch : long = 0
frequency : long = 37000000
txnSpeed : long = 2400
powerLevel : long = 0

configure()
connectPort()
disconnectPort()
getPort()
initialize()
query()
releaseObject()
runTest()
setMode()
inhibitTransmit()

<<uses>>

-packPtr

-logVar

Control_Physical_XYZ
(from POA_XYZ)

inherit

SCA Technical Overview
16 - 20 September 2002

Day 3 - 105

Unified Design for XYZ's
Physical Layer

Port
(from POA_CF)

Resource
(from POA_CF)

UserProvider_Physical_XYZ
(from POA_XYZ_Physical_RT)

Log_var
(from LogService)

UserProvider_Physical_XYZ_var
(from XYZ_Physical_RT)

XYZ_Physical
agcSquelch : long = 0
noiseSquelch : long = 0
frequency : long = 37000000
txnSpeed : long = 2400
powerLevel : long = 0

configure()
connectPort()
disconnectPort()
getPort()
inhibitTransmit()
initialize()
query()
releaseObject()
runTest()
setMode()
signalDetected()
pushPacket()
performAction()

-logVar -userVar

Control_Physical_XYZ
(from POA_XYZ)

composition

inherit

SCA Technical Overview
16 - 20 September 2002

Day 3 - 106

Partitioned Design for XYZ's
MAC Layer

Port
(from POA_CF)

Resource
(from POA_CF)

UserProvider_Physical_XYZ
(from POA_XYZ_Physical_RT)

Provider_MAC_XYZ
(from POA_XYZ_MAC)

User_MAC_XYZ_var
(from XYZ_MAC)

XYZ_MAC_Upstream

connectPort()
disconnectPort()
pushPacket()
signalDetected()

-userVar

XYZ_MAC_Control
errorControlOn : boolean = 0

configure()
connectPort()
disconnectPort()
getPort()
initial ize()
query()
releaseObject()
runTest()

-upstreamVar

Log_var
(from LogService)

-logVar
-logVar

UserProvider_Physical_XYZ_var
(from XYZ_Physical_RT)

XYZ_MAC_Downstream

connectPort()
disconnectPort()
pushPacket()
signalDetected()
ChannelErrorControl()

-downstreamVar

-logVar
-userVar

inherit

composition

SCA Technical Overview
16 - 20 September 2002

Day 3 - 107

Partitioned Designed for XYZ's
LLC Layer

Port
(from POA_CF)

Resource
(from POA_CF)

Provider_MAC_XYZ
(from POA_XYZ_MAC)

Provider
(from POA_LogicalLinkControlAPI)

User_var
(from LogicalLinkControlAPI)

XYZ_LLC_Upstream

connectPort()
disconnectPort()
pushPacket()
signalDetected()

-userVar

User_MAC_XYZ_var
(from XYZ_MAC)Log_var

(from LogService)

-logVar

XYZ_LLC_Downstream

connectPort()
disconnectPort()
enableEmptySignal()
enableFlowControlSignals...
pushPacket()
setNumOfPriorityQueues()
signalEmpty()
signalHighWatermark()
signalLowWaterMark()
spaceAvailable()

-userVar

-logVar

XYZ_LLC_Control

configure()
connectPort()
disconnectPort()
getPort()
initialize()
query()
releaseObject()
runTest()

-logVar

-upstreamVar
-downstreamVar

composition

inherit

SCA Technical Overview
16 - 20 September 2002

Day 3 - 108

Design for XYZ's Assembly
Controller

Port
(from POA_CF)

Resource
(from POA_CF)

Control_Physical_XYZ
(from POA_XYZ)

Resource_var
(from CF)

Log_var
(from LogService)

Control_Physical_XYZ_var
(from XYZ)

XYZ_Assembl
yController

3

1
-layerResourceVar

3

1-logVar

-layerControlVar

inheri t

composition

SCA Technical Overview
16 - 20 September 2002

Day 3 - 109

Build Waveform Component
Implementations

• Build Waveform UML Implementation model of
waveform software { SCA Developer’s Guide section 6.3 }

• Generate language-appropriate source files for servant
and user software {SCA Developer’s Guide section 5.7 }

• Complete Language Source Files Coding
• Create XML for each component {SCA Developer’s Guide

section 5.8 }

• Build User Interface {SCA Developer’s Guide section 8 } (optional)

SCA Technical Overview
16 - 20 September 2002

Day 3 - 110

Generate Language Source
Files

• Create the Source Files from the UML model.
– source generation can happen from the component view or

logical view

• UML Tool Additional Features
– Browse the source code (header or body)
– Reverse Engineer source code
– Syntax check
– Model Analysis
– Configuration Management

SCA Technical Overview
16 - 20 September 2002

Day 3 - 111

Complete Language Source
Files Coding

• Complete the source coding from the generated source
stub files from UML Implementation Model.
– User
– Servant

• Compile and Unit Test.

SCA Technical Overview
16 - 20 September 2002

Day 3 - 112

Create Waveform Component
XML

• Software Package Descriptor (SPD)
– Main server programs, shared libraries, or dynamic linkable

code have an associated Software Package Descriptor (SPD).
– Implementation Device Capacities/Resources needed based

upon Simulation and testing results.
• Software Component Descriptor (SCD)

– All components that uses and/or provides CORBA interfaces
have an associated Software Component Descriptor.

• Properties Descriptor
– Is optional for all software elements.
– Can be defined at three different levels.

• SCD – Component Definition Level
• SPD – Additional implementation properties for all implementations.
• SPD Implementation – Implementation properties specific to one

implementation.

SCA Technical Overview
16 - 20 September 2002

Day 3 - 113

Build User Interface

• Direct GUI CORBA Link Interface
• Non-Direct GUI CORBA Link Interface

SCA Technical Overview
16 - 20 September 2002

Day 3 - 114

Direct GUI CORBA Link
Example

• UI is on a CORBA
Platform in this case
Java

• Uses CF interfaces
• WF Specific

Interfaces
• GUI performs CORBA

calls using the
appropriate APIs for
the CF components
and WF Resource
components

• Network Connection
supports IIOP type

Windows OS

ORB Class Library

Java Virtual Machine

CORBA

Stub Code *

* generated with idltojava compiler

Java GUI

ORB

RTOS

CF

Radio

Platform

WF

POSIX API

Network
Connection

SCA Technical Overview
16 - 20 September 2002

Day 3 - 115

Non-Direct GUI CORBA Link
Example

• "adapter" software in
the radio that translates
between Non-CORBA
messages to CORBA
messages (CF or
Waveform interfaces)

• Non-CORBA
Messages can be over
a serial connection,
1553 or UDP
connection like SNMP.

UI

ORB

RTOS

CF

Radio

Platform

WF

POSIX API

serial
connection

adapter

SCA Technical Overview
16 - 20 September 2002

Day 3 - 116

Waveform Design Process

• Build Waveform Analysis Model
• Build Waveform Language Interfaces
• Build Waveform Component Implementations
• Integrate Waveform Components

SCA Technical Overview
16 - 20 September 2002

Day 3 - 117

Integrate Waveform
Components

• Integrate software and hardware
– Create Software Assembly Descriptor (SAD)

• Incrementally integrate the waveform components
– Integration

• Emulation of Target Hardware – by Developers
• Deployment of real Target Environment – by System Integrators or

Hardware Manufactures.
– Note: If Service Definitions are not adequately stated then this

will lead to longer integration times.

• Test resultant application
– Make Device Capacity/Resource Adjustments

• Update SPD files as appropriately
• Update Waveform Simulation Model as appropriately

– Compliant testing will be discuss on Day 5.

SCA Technical Overview
16 - 20 September 2002

Day 3 - 118

Waveform Design Summary

• Waveform Development Process
– A Refinement of Models

• Service Definitions
• Waveform Definition
• Language Specific Interfaces
• Implementation

– Reuse of Standardize Service Definitions at all Process Activities
– Many Different types of Waveform Artifacts

• Simulation Model
• UML Models
• Implementation Files

– SCA XML Files
– VHDL
– DSP
– CORBA Interfaces
– Waveform Component Implementations

– UML Tool can be used create and manage the waveform artifacts

SCA Technical Overview
16 - 20 September 2002

Day 3 - 119

Device DeviceManager

SCA Technical Overview
16 - 20 September 2002

Day 3 - 120

Device DeviceManager

• Device Implementations
• DeviceManager Implementations
• Device Usage and Design Examples

SCA Technical Overview
16 - 20 September 2002

Day 3 - 121

Device Implementations

• Has associated XML files
– Software Package Descriptor
– Software Component Descriptor
– Properties (mandatory)

• At a minimal device’s capacity/resource artifacts.
• States

– Usage State is implementation dependent and tied to its capacity
model

– Operational State is implementation dependent
– Administrative State behaves the same for all implementations

• A Logical Device can be implemented as single Device or as a
composite Device.

• Devices are usually associated with a device driver.
• Can make any operating system call, therefore code may not be

portable.
• Manufacturer or System Integrator supplies Device Package

Descriptor associated with Logical Device.

SCA Technical Overview
16 - 20 September 2002

Day 3 - 122

Device Implementations, cont’d

• Capacities Artifacts
– Visible Types

• These artifacts are used to describe the characteristics of the
device in order to find the right type of device to use or to be
deployed on.

• These capacity/resource artifacts are like constant characteristics
of the device and do not affect the states of the Device.

• The predefined ones in the SCA are:
– OS Name
– Processor Name

– Allocation Types
• These capacity types are managed by the Device and are used by

the Device’s Capacity Model, which effects the usage state for a
Device that indicates its availability.

• The capacities are also used to find the right type of device that has
this set of capacities.

SCA Technical Overview
16 - 20 September 2002

Day 3 - 123

DeviceManager Implementation

• Device Configuration Descriptor
– Provides the mechanism to startup 3rd party logical Devices on

a node.
– Provides the mechanism to startup services on a node.
– Provides the mechanism to create CF::FileSystem(s)
– Associations between logical Devices and Device Package

Descriptors.

• Services started up on a node depends on the System
Design and hardware platform

SCA Technical Overview
16 - 20 September 2002

Day 3 - 124

Device Usage and Design
Examples

• Base Device
– Audio
– Serial Data
– Security

• LoadableDevice
– FPGA, Modem

• ExecutableDevice
– GPP
– DSP

• AggregateDevice
– Multi-channel
– Multi-function

SCA Technical Overview
16 - 20 September 2002

Day 3 - 125

Simplified Example

Red
ProcessorModem

Black
Processor CS/S

Serial
Data

FPGA

DSP
GPP

GPP
Quad
Serial
Port

Device Manager

Modem Device

FPGA Device
DSP Device

Security Device
Device Manager

Serial Controller Device

Serial Port Devices
(4)

Security Device

GPP Device GPP Device

SCA Technical Overview
16 - 20 September 2002

Day 3 - 126

GPP Device (Red and Black)

LoadableDevice

load()
unload()

<<Interface>>

ExecutableDevice

execute(name : in string, options : in Properties, parameters : in Properties) :
terminate(processId : in ProcessID_Type) :

<<Interface>>

InvalidFileNam
msg :

<<CORBAException>>Properties
<<CORBATypedef>>

SCA Technical Overview
16 - 20 September 2002

Day 3 - 127

GPP Device (Red and Black)

• Executable Device Interface used to manage state,
capacity and loading and executing of software on GPP

• Load and Execute Implementations can be different
based on OS
– POSIX multi-process (e.g. Linux, LynxOS, QNX)
– Single Process (e.g. VxWorks 5.4, DSP BIOS II)
– Protection Domains (VxWorks AE)

SCA Technical Overview
16 - 20 September 2002

Day 3 - 128

Serial Port Device

AggregateDevice
<<Interface>>

Device
usageState : UsageType
adminState : AdminType
operationalState : OperationalType
identifier : string
softwareProfile : string
label : string
compositeDevice : AggregateDevice

allocateCapacity(capacities : in Properties) : boolean
deallocateCapacity(capacities : in Properties) : void

<<Interface>>

uses

Res ource
<<Interface>>

Properties
<<CORBATypedef>>

SCA Technical Overview
16 - 20 September 2002

Day 3 - 129

Serial Port Device

• Device interface used to manage state and device
configuration
– Configuration Properties

• Asynchronous Mode
– # Bits/character
– # Stop bits
– Parity
– Flow Control (HW, XON/XOFF, None)
– Baud Rate

• Synchronous Mode
– Rx Clock Source
– Tx Clock Source
– Baud Rate

SCA Technical Overview
16 - 20 September 2002

Day 3 - 130

Serial Port Device

• Ports used for operational device controls, data flow
– PTT
– RTS
– CTS

• Use Building Blocks to define APIs at ports
– Use same process as Waveform API development process

• Define UML, IDL
• Create Service Definitions

– I/O Building Blocks
– Packet Building Blocks

SCA Technical Overview
16 - 20 September 2002

Day 3 - 131

Serial Communications
Controller Device

AggregateDevice
<<Interface>>

Device
usageState : UsageType
adminState : AdminType
operationalState : OperationalType
identifier : string
softwareProfile : string
label : string
compositeDevice : AggregateDevice

allocateCapacity(capacities : in Properties) : boolean
deallocateCapacity(capacities : in Properties) : void

<<Interface>>

uses

Resource
<<Interface>>

Properties
<<CORBATypedef>>

SCA Technical Overview
16 - 20 September 2002

Day 3 - 132

Serial Communications
Controller Device

• Aggregate Device
– Aggregates 4 Serial Port Devices under one umbrella
– Common management functions handled here
– Manage Capacity

SCA Technical Overview
16 - 20 September 2002

Day 3 - 133

Security Device (Red)

AggregateDevice
<<Interface>>

Device
usageState : UsageType
adminState : AdminType
operationalState : OperationalType
identifier : string
softwareProfile : string
label : string
compositeDevice : AggregateDevice

allocateCapacity(capacities : in Properties) : boolean
deallocateCapacity(capacities : in Properties) : void

<<Interface>>

uses

Res ource
<<Interface>>

Properties
<<CORBATypedef>>

SCA Technical Overview
16 - 20 September 2002

Day 3 - 134

Security Device (Red)

• Assuming Black Side Control
– Uses ports and provides ports implement Encrypt/Decrypt

Interface from Security API
– Performs no CS/S management function
– Likely to implement test functionality

SCA Technical Overview
16 - 20 September 2002

Day 3 - 135

DeviceManager (Red)

uses

F ileS ystem
<<Interface>>

D eviceM anager
deviceC onfigura tionPro file : s tring
fileS ys : F ileSystem
identifie r : s tring
labe l : s tring
reg iste redD evices : D ev iceS equence
reg iste redS erv ices : Serv iceSequence

reg isterD ev ice(reg iste ringD ev ice : in D ev ice) : vo id
unregiste rD evice(reg is te redD evice : in D ev ice) : vo id
shutdow n() : vo id
reg iste rServ ice (reg iste ringServ ice : in O bject, nam e : in s tring) : vo id
unregiste rS erv ice(registe redService : in O b ject, nam e : in string) : vo id
getC om ponentIm plem entation Id(com ponentInstantia tion Id : in s tring) : s tring

<< Interface>>

D eviceS equence
<<C O R BA Typedef>>

D ev ice
<< Interface>>

InvalidO bjec tR eference
m sg : s tring

<<C O R BA Exception>>

PropertyS et

configure()
query()

<< Interface>>

P ortSupplie r

getP ort()

<<In terface>>

SCA Technical Overview
16 - 20 September 2002

Day 3 - 136

DeviceManager (Red)

• Registered Devices
– 1 Red GPP Device
– 1 Serial Controller Device (communications controller chip)
– 4 Serial Port Devices
– 1 Security Device

• Registered Services
– Event Service
– Log Service

SCA Technical Overview
16 - 20 September 2002

Day 3 - 137

FPGA Device

LoadableDevice

load(fs : in FileSystem, fileName : in string, loadKind : in LoadType) : void
unload(fileName : in string) : void

<<Interface>>

FileSystem
<<Interface>>

InvalidFileName
<<CORBAException>>

Device
usageState : UsageType
adminState : AdminType
operationalState : OperationalType
identifier : string
softwareProfile : string
label : string
compositeDevice : AggregateDevice

allocateCapacity()
deallocateCapacity()

<<Interface>>

SCA Technical Overview
16 - 20 September 2002

Day 3 - 138

FPGA Device

• Proxy for FPGA
• Resident on Black GPP
• Communicates with FPGA directly or via DSP
• Implements load protocol
• May or may not implement ports
• If ports implemented:

– Data transfer API built using Packet Building Blocks

SCA Technical Overview
16 - 20 September 2002

Day 3 - 139

DSP Device

LoadableDevice

load()
unload()

<<Interface>>

ExecutableDevice

execute(name : in string, options : in Properties, parameters : in Properties) :
terminate(processId : in ProcessID_Type) :

<<Interface>>

InvalidFileNam
msg :

<<CORBAException>>Properties
<<CORBATypedef>>

SCA Technical Overview
16 - 20 September 2002

Day 3 - 140

DSP Device

• Proxy for DSP
• Resident on Black GPP
• Communicates directly with DSP
• Implements load protocol
• Ports implemented:

– Data transfer API built using Packet Building Blocks

SCA Technical Overview
16 - 20 September 2002

Day 3 - 141

Modem Device

AggregateDevice
<<Interface>>

Device
usageState : UsageType
adminState : AdminType
operationalState : OperationalType
identifier : string
softwareProfile : string
label : string
compositeDevice : AggregateDevice

allocateCapacity(capacities : in Properties) : boolean
deallocateCapacity(capacities : in Properties) : void

<<Interface>>

uses

Res ource
<<Interface>>

Properties
<<CORBATypedef>>

SCA Technical Overview
16 - 20 September 2002

Day 3 - 142

Modem Device

• Aggregate Device
– Aggregates FPGA and DSP Devices under one umbrella
– Common management functions handled here
– Manage Channel Capacity

SCA Technical Overview
16 - 20 September 2002

Day 3 - 143

Security Device (Black)

AggregateDevice
<<Interface>>

Device
usageState : UsageType
adminState : AdminType
operationalState : OperationalType
identifier : string
softwareProfile : string
label : string
compositeDevice : AggregateDevice

allocateCapacity(capacities : in Properties) : boolean
deallocateCapacity(capacities : in Properties) : void

<<Interface>>

uses

Res ource
<<Interface>>

Properties
<<CORBATypedef>>

SCA Technical Overview
16 - 20 September 2002

Day 3 - 144

Security Device (Black)

• Assuming Black Side Control
– Manages state and capacity via Device Interface
– Control Ports implement Security APIs for:

• Fill
• Key Mgmt
• Policy Mgmt
• TRANSEC Mgmt
• Certificate Mgmt
• Crypto Control (Channel Instantiation and Teardown)
• I&A

– Data ports implement Security APIs for:
• Encrypt/Decrypt
• Keystream Generation

SCA Technical Overview
16 - 20 September 2002

Day 3 - 145

DeviceManager (Black)

• Registered Devices
– 1 Black GPP Device
– 1 Modem Device
– 1 FPGA Device
– 1 DSP Device
– 1 Security Device

• Registered Services
– Event Service
– Log Service

SCA Technical Overview
16 - 20 September 2002

Day 3 - 146

Device Design Summary

• Device Development Process
– Similar Process as Waveform Development

• Service Definitions
• Device Definition
• Language Specific Interfaces
• Implementation

– Reuse of CF Device, I/O and Physical Service Definitions at all
Process Activities

– Many Different types of Device Artifacts
• Simulation Model
• UML Models
• Implementation Files

– SCA XML Files
– Device Specific Driver
– CORBA Interfaces
– Device Component Implementations

– UML Tool can be used create and manage the Device artifacts

SCA Technical Overview
16 - 20 September 2002

Day 3 - 147

